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We discuss the application of wavelet transforms to a critical interface model which is known to provide a
good description of Barkhausen noise in soft ferromagnets. The two-dimensional version of the model �one-
dimensional interface� is considered, mainly in the adiabatic limit of very slow driving. On length scales
shorter than a crossover length �which grows with the strength of the surface tension�, the effective interface
roughness exponent � is �1.20, close to the expected value for the universality class of the quenched Edwards-
Wilkinson model. We find that the waiting times between avalanches are fully uncorrelated, as the wavelet
transform of their autocorrelations scales as white noise. Similarly, detrended size-size correlations give a
white-noise wavelet transform. Consideration of finite driving rates, still deep within the intermittent regime,
shows the wavelet transform of correlations scaling as 1 / f1.5 for intermediate frequencies. This behavior is
ascribed to intra-avalanche correlations.
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I. INTRODUCTION

In this paper we use wavelet concepts �1–3� to discuss
assorted properties of a single-interface model which has
been used in the description of Barkhausen “noise” �BN�
�4–9�. BN is an intermittent phenomenon which reflects the
dynamics of domain-wall motion in the central part of the
hysteresis cycle in soft ferromagnets �see Ref. �10� for a
review�. By ramping an externally applied magnetic field,
one causes sudden turnings �avalanches� of groups of spins.
The consequent changes in magnetic flux induce a time-
dependent electromotive force V�t� on a coil wrapped around
the sample. Analysis of V�t�, assisted by suitable theoretical
modeling, provides insight into both the domain structure
itself and its dynamical behavior. It has been proposed that
BN is an illustration of “self-organized criticality” �4,11–13�,
in the sense that a broad distribution of scales �i.e., avalanche
sizes� is found within a wide range of variation of the exter-
nal parameter—namely, the applied magnetic field—without
any fine-tuning. The interface model studied here �4� incor-
porates a self-regulating mechanism in the form of a demag-
netization factor.

This way, real-space properties—e.g., interface rough-
ness—reflect the divergence of the system’s natural length
scale, as it self-tunes its behavior to lie close to a second-
order �interface depinning� transition. In this context, the ap-
plication of wavelet transforms, which by construction incor-
porate multiple length scales �1–3�, is naturally suggested.

Also, when one considers the time series of intermittent
events which characterizes BN, a broad range of variation of
V�t� is shown, in correspondence with the similarly wide
distribution of avalanche sizes. Specifically considering the
model of Ref. �4�, it is known that the demagnetizing term is
responsible for the introduction of short-time negative �inter-
avalanche� correlations �such correlations are observed in ex-
periments as well� �4,9�. Thus, a finite time scale �“loading
time”� is introduced, which coexists alongside the broad dis-

tribution of V�t�. The tool most frequently used in the analy-
sis of BN time series is the Fourier power spectrum—i.e., the
�cosine� Fourier transform of the time-time autocorrelation
function of the signal V�t� �10,14,15�. BN power spectra ex-
hibit distinct types of behavior along different frequency
ranges, reflecting the fact that finite “internal” times play
relevant roles. For instance, the loading times referred to
above are expected to influence the low-frequency end of the
power spectrum, which pertains to inter-avalanche correla-
tions, while the high-frequency tail relates to intra-avalanche
ones. It has been stated that “understanding the power spec-
trum of the magnetization noise is a long standing problem”
�15�.

Some existing applications of wavelet transforms to the
analysis of V�t� �16–18� mainly aim at demonstrating that the
resulting spectra can successfully distinguish between BN
originating from physically distinct materials �e.g., samples
under differing amounts of internal stress�. Semiempirical
classification schemes have been proposed �17,18�. Wavelet
�Haar� transforms �1� have also been employed in conjunc-
tion with standard Fourier series in order to produce higher-
order power spectra of experimental data for V�t� �13,19,20�.
Analysis of the corresponding results provides relevant evi-
dence concerning correlations between events at different
frequency scales. While in this work we shall deal only with
first-order transforms, in Sec. IV below we shall comment on
possible connections of our own findings to those of Refs.
�13,19,20�.

The paper is organized as follows. In Sec. II we recall
pertinent aspects of the interface model used here and of our
calculational methods, as well as some basic features of
wavelet transforms. In Sec. III we consider the scaling of
interface roughness configurations. In Sec. IV we investigate
properties extracted from time series—namely, waiting-time
and avalanche-size correlations. Finally, in Sec. V, conclud-
ing remarks are made.

II. MODEL AND WAVELET TRANSFORMS

A. Single-interface model for BN

We use the single-interface model introduced in Ref. �4�
for a description of BN. In line with experimental procedure,*sldq@if.ufrj.br
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the external field H acting on the sample is assumed to in-
crease linearly in time; therefore, its value is a measure of
“time.” Initially, we consider the adiabatic limit of a very
slow driving rate; thus, avalanches are considered to be in-
stantaneous �occurring at a fixed value of the external field�.
In this simplified version, a plot of V�t� against t consists of
a series of spikes of varying sizes, placed at nonuniform
intervals. Generalizations for a finite driving rate may be
devised �6,21,22�; they are investigated in Sec. IV D below.

Simulations are performed on an Lx�Ly �� geometry,
with the interface motion set along the infinite direction.
Here we consider Ly =1 �system dimensionality d=2, inter-
face dimensionality d�=1�. Periodic boundary conditions are
imposed at x=0,L.

The interface �180° domain wall separating spins parallel
to the external field from those antiparallel to it� is composed
by L discrete elements whose x coordinates are xi= i, i
=1, . . . ,L, and whose �variable� heights above an arbitrary
reference level are hi. The simulation starts with a flat wall:
hi=0 for all i.

Each element i of the interface experiences a force given
by:

f i = u�xi,hi� + ��hi+1 + hi−1 − 2hi� + He, �1�

where

He = H − �M . �2�

The first term on the right-hand side of Eq. �1� represents
quenched disorder and is drawn from a Gaussian distribution
of zero mean and width R; the intensity of surface tension is
set by �, and the effective field He is the sum of a time-
varying, spatially uniform, external field H and a demagne-
tizing field which is taken to be proportional to M
= �1 /L��i=1

L hi, the magnetization �per site� of the previously
flipped spins for a lattice of transverse width L. Here we
mostly use R=5.0, �=1.0, and �=0.005, values for which
fairly broad distributions of avalanche sizes are obtained
�5–8�. The exception is Sec. III, where �for reasons to be
explained�, we allow the surface tension � to vary.

The dynamics goes as follows. For fixed H, starting from
zero, the sites are examined sequentially; at those for which
f i�0, hi is increased by one unit, with M being updated
accordingly; the corresponding new value of u is drawn. The
whole interface is swept as many times as necessary, until
only sites with f i	0 are left, which marks the end of an
avalanche. The external field is then increased until f i=0 for
at least one site. This is the threshold of a new avalanche,
which is triggered by the update of the site�s� with f i=0 and
so on.

Because of the demagnetizing term, the effective field He
at first rises linearly with applied field H and, then, upon
further increase in H, saturates �apart from small fluctua-
tions� at a value rather close to the critical external field for
the corresponding model without demagnetization �4,5�.

B. Wavelets

Wavelets are characterized by a scale parameter a and a
translation parameter b such that the wavelet basis �
a;b�x��
can be entirely derived from a single function 
�x� through


a;b�x� = 
	 x − b

a

 . �3�

The wavelet transform of a function f�x� is given by:

W�f��a,b� =
1
�a
�

−�

�


a;b
� �x�f�x�dx . �4�

Here we shall use the Daubechies wavelet family �1–3�.
These are real functions �appropriate in the present case
where the input signal is always a real number, whether it be
an interface height or a voltage�; in the discrete transform �2�
implementation used here, the scales �a� are hierarchically
distributed—i.e., aj =2−ja0. We have experimented with the
Daubechies wavelets of orders �1� 4, 12, and 20 and found
that, similarly to Ref. �3�, the quality of our results does not
seem to depend on that. Therefore we have chosen the lowest
order, Daub4, for our calculations.

It must be noted that the Daubechies wavelet filter coef-
ficients used here incorporate periodic boundary conditions
�2�. In the applications to be discussed, for each case we
shall comment on the specific consequences of this con-
straint.

Furthermore, following Ref. �3�, we have chosen to aver-
age over the translation parameters b, thereby arriving at a
set of averaged wavelet coefficients to be denoted by
W�f��a�. Among the several possible choices, we have found
that averaging the squared coefficients tends to give
smoother results than, e.g., using absolute values �3�. Thus,
we define

W�f��a� = ��W�f��a��2�b�1/2, �5�

where ¯�b stands for average over the translation param-
eters b.

III. REAL-SPACE PROPERTIES:
INTERFACE ROUGHNESS

We begin by applying wavelet transforms to interface
roughness data. The roughness w2 of a fluctuating interface
with N elements is the position-averaged square width of the
interface height above an arbitrary reference level �23,24�:

w2 = N−1�
i=1

N

�hi − h̄�2, �6�

where h̄ is the average interface height. Self-affinity proper-
ties are expressed in the Hurst, or roughness exponent �
�25,26�:

w2�L�� � L2�, �7�

where angular brackets stand for averages over the ensemble
of allowed interface configurations, and �for the �1+1�-
dimensional systems which will be our main concern here� L
is the profile length.

Numerical evidence has been given �8� that, as regards
interface configuration aspects, the model described here is
in the quenched Edwards-Wilkinson universality class. Thus
�27–30� one expects ��1.25 in d=2.
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We have simulated BN through the evolution in time of
the adiabatic, d=2 version of the model described above. A
steady state—i.e., the stabilization of He of Eq. �2� against
external field H—occurs after some 200 events for the range
of parameters used here. In order to avoid start-up effects,
here and in all subsequent sections we have used only
steady-state data in our statistics. At the end of each ava-
lanche, we wavelet-transformed the instantaneous configura-
tion of interface heights—i.e., the set of �hi�, i=1, . . . ,L. As
the avalanches progress, one gets a sampling of successive
equilibrium configurations, which in turn provides us with an
ensemble of the corresponding wavelet coefficients. For each
scale these are then translation-averaged, as explained above.

In this case, the periodic boundary conditions imposed at
the interface extremities are naturally consistent with those
implicit in the wavelet transform; thus, no potential mis-
match arises.

For comparison with BN simulation data, we generated an
artificial profile with �=1.25 using the random midpoint dis-
placement algorithm �31�. Although earlier applications of
wavelet transforms to fractional Brownian motion were re-
stricted to 0	�	1 in Ref. �3�, we found no technical im-
pediments in going above that upper limit.

It is known that profiles with ��1 are rather smooth �32�.
This is apparently at odds with the results to be expected
from the force law, Eq. �1�, from which the random locations
of pinning centers would favor a rugged interface shape.
Thus, it is worth looking at interface configurations in real
space. One anticipates from Eq. �1� that the surface tension
must play an important role in this context. Accordingly, we
allowed � to vary by one order of magnitude. In Fig. 1, one
sees that on a fixed �system-wide� scale, the persistence
trends characteristic of ��1 /2 are indeed reinforced by in-
creasing �.

One can have a quantitative understanding of the trends
shown in Fig. 1, with the help of wavelet transforms. The
corresponding results are displayed in Fig. 2, where the hori-
zontal axis is in units of inverse length scale, or “wave num-
ber” k�1 /a. From scaling arguments �3�, the averaged

wavelet coefficients W�h��k� for a self-similar profile are ex-
pected to vary as

W�h��k� � k−��1/2�+��. �8�

A least-squares fit of a power-law dependence to the
artificial-profile data for 64�k�4096 gives �=1.25�1�.
Such a central estimate and its uncertainty are both in line
with corresponding results for 0	�	1 �3�.

One sees that for BN data, ��1.25 holds only up to a
crossover scale, which �as argued above� increases with �.
This is illustrated in the inset of Fig. 2, where a section, with
1/32 of the full length of the ragged �=1.0 interface of Fig.
1�a�, is examined. On this scale, the profile is indeed much
smoother than its parent.

A fit of 64�k�4096 data for �=10.0 results in �
=1.19�3�. This can be compared, e.g., with finite-size scaling
estimates via Eq. �7� for the present model, with �=1.0, and
a sequence of 400�L�1200 with O�106� configurations
each, for which one quotes �=1.24�1� �8�. Equation �6� re-
minds one that the latter method only considers fluctuations
on short scales; thus, in the present case it rightly captures
the persistent behavior characteristic of that limit �at the ex-
pense of not being sensitive to the different trends that domi-
nate the picture at larger scales�.

We conclude that the quantitative behavior exhibited by
interface roughness in BN is likely to change when studied
on varying length scales. Though a regime should exist,
which displays a close similarity to the Edwards-Wilkinson
class of interface evolution problems, this should cross over
to a more ragged picture on larger scales �the precise location
of such change being determined by the interplay between
quenched randomness and surface tension�. Wavelet trans-

FIG. 1. �Color online� Snapshots of typical interface configura-
tions, all with 4096 sites and periodic boundary conditions at the
edges. �a�–�c� Two-dimensional BN simulation, with varying sur-
face tension �see Eq. �1��: respectively, �a� �=1.0, �b� 3.0, and �c�
10.0. �d� Artificial profile with �=1.25.

FIG. 2. �Color online� Double-logarithmic plot of averaged
wavelet coefficients against wave number k. Symbols joined by
solid lines: wavelet transform of interface roughness data from two-
dimensional BN simulation �interface dimensionality d�=1�. L
=4096, 105 samples, with varying surface tension � �see Eq. �1��.
Crosses: wavelet transform of synthetic profile with Hurst exponent
�=1.25. L=4096, 103 samples. Solid line at bottom right has slope
−1.75. Inset: section of length L�=128 of typical profile for �
=1.0, illustrating interface smoothness on short scales �compare
Fig. 1�a��.
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forms are thus a particularly suitable method for the study of
this problem on account of the equal access that is provided
to multiple length scales.

IV. TIME SERIES AND POWER SPECTRA

A. Introduction

As explained above, owing to the assumed linear increase
of applied field with time �in analogy with experimental set-
ups�, we shall express time in units of H as given in Eqs. �1�
and �2�.

Initially we consider the adiabatic limit of very slow driv-
ing. In experiment, the integrated signal ��tV�t�dt is propor-
tional to the magnetization change �number of upturned
spins� during the interval �t. In the adiabatic approximation,
a boxlike shape is implicitly assumed for each avalanche
�i.e., details of the internal structure of each peak, as it de-
velops in time, are ignored on account of its duration being
very short�; thus, the instantaneous signal intensity �spike
height� is proportional to the corresponding avalanche size.

As the signal is intermittent, there are significant periods
�waiting times �WTs�� of no activity at all. Waiting-time dis-
tributions for the adiabatic regime were examined in Ref. �9�.
These were found to be rather flat, apart from �i� a sharp
cutoff at the high end �related to the finite cutoff in the ava-
lanche size probability distribution� and �ii� a number of
peaks concentrated in a somewhat narrow region, which are
associated to very frequent and small, spatially localized
�i.e., noncritical� events involving typically N=1–10 sites
�6�.

We investigate the autocorrelations of two quantities—
namely, WTs and avalanche sizes �i.e., BN spike voltages V�.
For X=waiting time TW ,V we calculate normalized, two-
time connected correlations, averaged over t:

GX�� �
X�t�X�t + ��t

X�t��t
2 − 1. �9�

For a system with L=400, we have generated 2�104 distinct
time series of BN events. It is known �4� that, on account of

the demagnetizing factor, size-size correlations are negative
at short times and decay with a characteristic relaxation time
�for this system size and for the values of physical param-
eters used here� of 0�0.14 �9�. Thus, for each sample we
calculated correlations in the range 0��R, R=1.2, by
scanning moving “windows” of width R along an interval of
width 10R. In preparation for ulterior wavelet analysis, the
results were binned into N=1024 equal-width bins. Our re-
sults are depicted in Fig. 3.

The exponential behavior of the size data, noted earlier
�4,9�, is clearly discernible in Fig. 3 even for �0.3, by
which stage the signal-to-noise ratio has dipped to something
close to unity. Waiting-time correlations initially seem to fol-
low a similar exponential trend �with a time constant �1 /4
that for their size counterpart�; however, a sharp “shoulder”
develops at �0.1, signaling an abrupt end to the exponen-
tial regime. This indicates that negative waiting-time and
size correlations have differing underlying causes.

B. Waiting-time correlations

Indeed, in calculating the correlations shown in Fig. 3, the
time separation  between any two waiting times is consid-
ered to be the separation between their respective starting
moments �the same is done for size correlations, but it turns
out to be of no further consequence, as avalanches are in-
stantaneous in the adiabatic regime�. This implies that the
minimum separation between two waiting times is the extent
of the shortest of the two. Therefore, an effect arises at very
short times , which is the analog of hard-core repulsion for
stoichiometric problems in real space. Since the distribution
of waiting times is flat on a logarithmic scale �9� �thus
P�TW��1 /TW on a linear scale� and assuming waiting times
to be uncorrelated �to be checked below�, Eq. �9� gives
�GWT����1−a�exp�−a� for →0.

In order to eliminate this artifact, we then decided to in-
dex waiting times simply by their order of occurrence; thus
�with j, k nonnegative integers�,

GWT� �j� =
TW�k�TW�k + j��k

TW�k��k
2 − 1. �10�

In analogy with our earlier procedure, correlations were ac-
cumulated for j=1, . . . ,N �N=1024� by generating 20 inde-
pendent series of 10N consecutive events; for each series, we
scanned moving “windows,” each comprising N+1 events—
i.e., N waiting times. This time, the result was essentially flat
noise, with no apparent short-time structure �see inset in Fig.
4�. Therefore, further characterization must proceed via spec-
tral analysis. We briefly recall how this can be done using
wavelets.

Assume one has 1 / f� noise. One calculates and wavelet-
transforms the corresponding ensemble-averaged autocorre-
lations and then translation-averages the resulting coeffi-
cients at each scale. Denoting the set of averaged wavelet
coefficients by �W�g��T��, where �T� stands for the hierarchi-
cal set of wavelet timescales, and changing the independent
variable to “frequency” f =1 /T, one expects, from scaling
�3,26�,

FIG. 3. �Color online� Waiting-time �WT� and size correlations
�see Eq. �9�� against “time” in the adiabatic regime, for a system
with L=400, 2�104 samples. Inset: absolute values of GX�� on a
semilogarithmic plot, same data range as in main figure.
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W�g��f� � f−�. �11�

For ��1 this is derived immediately from Eq. �8�, plus the
exponent relation �=1+2� �8,24�. Though for 0���1 the
scaling of cumulants of the noise distribution differs from
that for ��1, the basic scaling properties underlying Eq.
�11� remain valid �23�.

Equation �11� can be tested with pure 1 / f� noise via the
usual procedure of first producing a sequence of Gaussian
white noise, Fourier-transforming that sequence, multiplying
the Fourier components by f−�/2, and then inverting the Fou-
rier transform �23,33�. The resulting sequence is pure 1 / f�

noise. An example with �=1 /2 is shown in Fig. 4.
Our results for BN are shown in Fig. 4. Apart from the

lowest frequency scale �which is not expected to fall in line
with the rest, as it represents the most smoothed-out behavior
�2��, the flatness of the averaged coefficients against varying
scales strongly indicates that �=0 �white noise�; i.e., waiting
times are indeed uncorrelated.

The sequences of waiting-time correlation data of course
need not be periodic. However, as seen above, they behave
as random noise. Contrarily to, e.g., generalized Brownian-
motion profiles, such data are noncumulative �i.e., they are
not constrained in the fashion of consecutive positions of a
random walker, which cannot differ by more than one step
length�. Thus, the periodic boundary conditions implicit in
the wavelet transform are not expected to introduce signifi-
cant distortions in their analysis.

C. Size correlations: Adiabatic regime

We now turn to the treatment of voltage data. For the
adiabatic version of the interface model, of course, only
inter-avalanche voltage correlations can be evaluated. As
mentioned above, the data in Fig. 3 are very well fitted by an
exponential, with a “loading time” 0=0.14�1�. One then ex-
pects the Fourier power spectrum to be essentially flat for
f �0

−1 and to behave as 1 / f2 for f �0
−1. This has indeed

been found, e.g., in Ref. �6�.
The correlations to be wavelet transformed are nonperi-

odic and follow a clear base-line trend; therefore, one needs
to assess and eliminate potential distortions caused by �i�
using a periodic wavelet basis and �ii� the base-line trend
itself.

In Fourier analysis, the standard way to deal with �i� is by
zero-padding a region around the function to be transformed
�2�. However, zero padding does not work well when the
function varies by orders of magnitude between the extremes
of the interval �2�, as is the case here where only fluctuations
are left at the upper end. Techniques have been developed to
remove the effects of periodic boundary conditions from
wavelet transforms �i.e., to consider “wavelets on the inter-
val”� �34�. These have very recently been translated into a
computer code �35�, restricted to the Daub4 class. In the
following, motivated especially by the need to address point
�ii�, we propose a simplified approach based on detrending
ideas. Combinations of wavelet decomposition and detrend-
ing have been investigated �36�; however, the averaged co-
efficient analysis, which is our main concern here, has not

been considered, except for some very simple cases �linear
and quadratic drift �3��.

We first illustrate how the averaged coefficients are af-
fected by an overall exponential trend. Using the periodic
Daub4 basis, we wavelet-transformed the size-correlation fit-
ting function GV

fit��=−exp�− /0�. From Eq. �4�, one has

W�GV
fit��a,b� =

1
�a
�

−�

�


a;b�x�e−x/0dx . �12�

By changing the variables, Eq. �12� turns into

W�GV
fit��a,b� = �ae−b/0�

−�

�


1;0�x��e−ax�/0dx�. �13�

The first p=M /2 moments �starting at zeroth order� of
Daubechies wavelets of order M vanish �2�. Thus, for M
=4, as is the case here, Taylor-expanding the exponential in
the integrand of Eq. �13�, one sees that the lowest-order non-
zero term is proportional to a5/2—i.e.,

W�GV
fit��a,b� � a5/2e−b/0 + O�a7/2� . �14�

We evaluated GV
fit�� at N=4096 equally spaced points in the

interval 0		1.5 and wavelet-transformed it. For each hi-
erarchical level j�2, we plotted all 2 j wavelet coefficients
and found that they fall on the exponential-decay pattern of
the original function and �at the jth hierarchical level� are
proportional to 2−5j/2, both features as predicted in Eq. �14�,
except for the last two �“wraparound” coefficients �2��. In
order to fulfill the implicitly assumed periodicity of the origi-
nal function, the latter coefficients take values �10j larger
than the last preceding one �see an example for j=5 in the
inset of Fig. 5�. Including these data in the coefficient-

0 500 1000

-0.005

0

0.005

FIG. 4. �Color online� Double-logarithmic plot of averaged
wavelet coefficients against frequency f . Squares: wavelet trans-
form of waiting-time autocorrelation data from two-dimensional
BN simulation in the adiabatic regime, calculated according to Eq.
�10�. L=400, 20 independent series of 10�1024 waiting times.
Crosses: wavelet transform of autocorrelations for synthetic 1 / f�

noise, �=1 /2, L=4096, 5�103 samples. A least-squares fit of 16
	 f 	1024 data gives �=0.51�1�. Solid line has slope −1 /2. Inset:
waiting-time correlations from BN simulation, calculated according
to Eq. �10�.
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averaging procedure would introduce sizable distortions �we
did it and found that the coefficients thus averaged behave as
1 / f , which is in clear disagreement with the prediction of Eq.
�14� of a scaling power 5/2�.

To correct this artifact, we discarded the wraparound co-
efficients from the averaging procedure. Similar procedures
have been adopted elsewhere �36�. As can be seen in Fig. 5,
this was enough to restore the expected behavior. Thus, point
�i� above has been dealt with. We also wavelet-transformed
GV

fit�� using the periodic Daub12 basis. As expected, the
coefficients behaved approximately as a13/2e−b/0. The last
four coefficients at each hierarchical level showed consider-
able increase against the exponential-decay pattern �as op-
posed to the last two for Daub4�. In summary, as regards
point �ii� we have shown that the most prominent feature of
the wavelet transform �in the context of average wavelet co-
efficient scaling�—namely, the Hurst-like exponent—of such
a smooth function as the exponential fit is in fact basis de-
pendent.

Thus, our simulational data must be detrended in order to
eliminate distortions coming from the smooth base line,
which risks contaminating all scales. We did this by first
subtracting the dominant exponential behavior given by
GV

fit��; for further refinement, we then removed some re-
maining nonmonotonic mismatch via the least-squares fit of
a secondary adjusting function f�� �a fourth-degree polyno-
mial enveloped by a single exponential�, so GV

d��=GV��
−GV

fit��− f��. The result of wavelet-transforming the fully
detrended correlations is depicted in Fig. 6, while the corre-
sponding raw �detrended� data are shown in the inset of the
same figure �together with f��, so one can have a quantita-
tive estimate of how far the single-exponential fit goes to
describe the undetrended data�. Note that f�� has significant
smooth variations on scales of �=0.05 or longer, which
translate into wave vectors k�32. We have wavelet-

transformed partially detrended data �i.e., without subtracting
f���. The respective averaged wavelet coefficients are �10
times larger than those for the fully detrended curve for k
�16 and fall fast for increasing k: at k=64 the ratio is 1.4,
and for k�64 both sets coincide to within less than 1%. So
failing to subtract f�� introduces artificially large coeffi-
cients at large scales, which are not noise related.

Note that similar remarks apply here as in the earlier case
of waiting-time correlations; namely, since GV

d�� is essen-
tially noise around a horizontal base line, the periodic bound-
ary conditions implicit in the wavelet transform must not
imply any significant distortion in our results.

The results exhibited in the main diagram of Fig. 6
strongly indicate that the detrended size correlations behave
as 1 / f0 �white� noise. We defer discussion of this until the
next subsection, where departures from the adiabatic regime
are investigated.

D. Size correlations: Finite driving rate

In order to discuss intra-avalanche correlations, one must
introduce a finite driving rate �6,21,22�, so separate events
within the same avalanche can be ascribed to different in-
stants in time. In line with standard practice �14,21,37–39�
our basic time unit is one lattice sweep, during which the
external field is kept constant, and all spins on the interface
are probed sequentially as described above. In the adiabatic
regime, the external field is kept constant for the whole du-
ration of an avalanche—i.e., for as many sweeps as it takes
until no unstable sites are found along the interface. At finite
driving rates, the field is increased by a fixed amount, hence-
forth denoted �, at the start of each sweep while an ava-
lanche is taking place. Eventually, no more unstable sites
will be left, and then one proceeds as in the adiabatic regime,
increasing the field by the minimum amount �H necessary to
start a new avalanche. In these “real” time units, the waiting

FIG. 5. �Color online� Main diagram: double-logarithmic plot of
averaged wavelet coefficients against frequency f . Squares: wavelet
transform of N=4096 points of fitting function for size correlations,
GV

fit��, for 0		1.5. At each hierarchical level j�2, the last two
coefficients were omitted from the averages �see text�. Solid straight
line has slope −5 /2. Inset: semilogarithmic plot of �absolute value
of� all 32 wavelet coefficients W�GV

fit��a ,b� �denoted by Wa�b��
against translation parameter b, at hierarchical level j=5.

0 0.2 0.4 0.6 0.8 1 1.2

-0.05

0

0.05

FIG. 6. �Color online� Double-logarithmic plot of averaged
wavelet coefficients against frequency f . Squares: wavelet trans-
form of detrended size autocorrelation data, GV

d�� from two-
dimensional BN simulation in the adiabatic regime. L=400, 2
�104 samples. Inset: solid lines, fully detrended size correlations
from BN simulation; dashed line, secondary adjusting function f��
�see text�.
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time between the end of one event and the start of the next is
then �H /�; however, in order to produce meaningful com-
parisons, especially between data acquired in the adiabatic
and nonadiabatic regimes, it will be useful to keep referring
to the “absolute” scale given by the applied field H itself,
which unequivocally locates events along the hysteresis
cycle.

As � grows, the intermittent character of events is gradu-
ally lost as more and more avalanches coalesce �6�, and one
eventually crosses over to a regime in which the interface is
fully depinned; i.e., it moves at nonzero average speed.

In Fig. 7 we show autocorrelations for driving rates, still
within the intermittent regime, compared with those for the
adiabatic limit. The most significant change upon increasing
� is the effective loss of negative short-time correlations. In
fact, this represents an excess of positive intra-avalanche
contributions, on top of the negative inter-avalanche terms
�and some intra-avalanche ones as well� which still exist for
nonzero � �on account of the demagnetizing factor�. Positive
reinforcements arise mostly because, when many sites are
overturned during one lattice sweep, that same number of
new sites will be probed by the interface. For each new site,
the quenched randomness term in Eq. �1� may, or may not,
contribute to further motion with roughly equal chances. By
contrast, at a site which remains pinned during one sweep,
the interface stands fewer chances of getting unstuck, as the
contribution from the randomness term is kept constant; de-
pinning of such a site is more likely to happen if the field is
substantially increased—i.e., during a subsequent avalanche.

We detrended the ��0 data of Fig. 7 by similar proce-
dures to those used earlier for �=0. The main difference was
that detrending was done in a single stage, fitting f�� de-
scribed in Sec. IV C to the raw data and then subtracting the
least-squares fit from the original data. The results of
wavelet-transforming the detrended data are shown in Fig. 8.

One can see that, as opposed to the adiabatic regime, data
for finite driving rates clearly exhibit a downward trend for a
range of intermediate frequencies, spanning three to four hi-
erarchical levels and which is characterized by an approxi-

mate 1 / f1.5 behavior �the straight-line segments in the figure
have slope −1.5�. Furthermore, with the “absolute” fre-
quency f given in inverse applied field units and � given in
units of applied field change per unit time, dimensional ar-
guments show that f�� f� is the “natural” frequency vari-
able �i.e., inverse “real” time�. This is shown more clearly on
a scaling plot, Fig. 9, where use of f� as the independent
variable causes the 1 / f1.5 sections of all ��0 data to col-
lapse.

Given that, in these slow- �but nonadiabatic� driving re-
gimes, avalanche coalescence comprises only a small frac-
tion of events �6�, one can say that approximately the same

FIG. 7. �Color online� Normalized two-time correlations �aver-
aged over t� V�t�V�t+�� / V�t��2−1 from two-dimensional BN
simulation, for a system with L=400, and driving rates � as given
in the key to symbols ��=0 corresponds to adiabatic limit�. “Time”
is given in applied field units—i.e., “absolute” scale �see text�.

FIG. 8. �Color online� Double-logarithmic plot of averaged
wavelet coefficients against frequency f , from wavelet transform of
detrended size autocorrelation data, GV

d��, for two-dimensional BN
simulations of system with L=400, and assorted driving rates �.
The key to symbols is the same as in Fig. 7 ��=0 corresponds to
adiabatic limit�. Frequency is given in inverse applied field units—
i.e., “absolute” scale �see text�. Plots are successively shifted down-
ward by a factor of 10 on a vertical scale to avoid superposition.
Straight-line segments mark subsets of ��0 regime where approxi-
mate 1 / f1.5 behavior holds.

FIG. 9. �Color online� Double-logarithmic scaling plot of aver-
aged wavelet coefficients against “natural” frequency f�� f�, from
wavelet transform of detrended size autocorrelation data, GV

d��, for
two-dimensional BN simulations of system with L=400, and as-
sorted driving rates ��0. The key to symbols is the same as in
Figs. 7 and 8. Solid straight line has slope −1.5.
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sequence of avalanches occurs for all � investigated here,
only at different “real” paces. Since the “real” time interval
between consecutive avalanches is �h /� and assuming �h to
be the same, for different values of �, between two given
avalanches �for the reasons just mentioned�, one sees that
inter-avalanche correlations will shift to higher “real” fre-
quencies as � grows. On the other hand, within a given
avalanche, two subevents separated by a given number of
lattice sweeps are �by definition used in the simulation� sepa-
rated by the same “real” time interval; thus, their correlations
are not shifted in “real” frequency for varying �. Therefore
we conclude that the collapsing sections of the scaling plot
correspond mainly to intra-avalanche correlations.

First-order �Haar� spectra of experimental BN data show
that, for Fe21Co64B15, the high-frequency section falls ini-
tially as f−1.2 and then crosses over to f−1.9, while for Fe Si
the decay is with f−1.65 �19,20�. Though the exponent values
in both cases are not too dissimilar to the one found here,
analysis of higher-order spectra �13� leads to a more nuanced
picture. For Fe21Co64B15, it is found that most of the power
in the high-frequency range comes from intrapulse correla-
tions �19�, similar to our conclusion above, whereas for Fe-Si
the conclusion was that the high-frequency power is mainly
connected to the interpulse sort �20�. Therefore it would ap-
pear that the dynamics of the present model is closer to that
of BN in materials like Fe21Co64B15 than in Fe Si.

V. DISCUSSION AND CONCLUSIONS

We have discussed the application of wavelet transforms
to a description of both real-space and timelike properties of
an interface model, which is used for the description of
Barkhausen noise in soft ferromagnets. Most of our calcula-
tions involved the scaling properties of positional averages
of wavelet coefficients, taken at each hierarchical �size�
level, as first proposed in Ref. �3�. In some instances we
showed that direct analysis of individual coefficients was
called for, in order to unravel artificial effects which would
otherwise distort our aggregate results.

Here we considered the d=2 version of the model �thus
the interface dimensionality is d�=1�, mainly in the adiabatic
limit of very slow driving, for which the sudden “ava-
lanches” of domain wall motions are considered to occur
instantaneously. In Sec. IV D, we extended our study to finite
driving rates in order to analyze intra-avalanche correlations

Our investigation of real-space aspects consisted in the
evaluation of the characteristic interface roughness exponent
�. On scales shorter than a crossover length �which turns
larger as the intensity of surface tension grows�, we get �
=1.20�3�, close to �=1.24�1�, derived by other methods for
the same model �8�, and also to assorted estimates for
quenched Edwards-Wilkinson systems �27–30�, which give
��1.25.

Turning to time series, in Sec. IV B we showed that a
proper indexing of the sequence of waiting times between
avalanches is crucial in order to avoid artificial short-time
negative correlations. Procedures similar to that used here—
namely, indexing waiting times simply by their order
of occurrence �instead of using the starting time of each

interval�—have been used consistently in the context of self-
organized criticality scaling �40�. Our final result �see Fig. 4�
was that the correlations between waiting times are white
noise; i.e., these quantities are fully uncorrelated. Going back
to the rules of interface motion and to Eqs. �1� and �2�, one
sees that this is a signature of the quenched-randomness term
u�xi ,hi�. This fact is in contrast to the behavior of size cor-
relations, which are strongly influenced by demagnetization
�4,9�.

In Sec. IV C, we started from the known fact that, in the
adiabatic regime, size-size correlations are negative at short
times and decay approximately as an exponential �4,9�. By
direct analysis of �nonaveraged� wavelet coefficients, we il-
lustrated practical ways to deal with artifacts introduced by
the periodicity of the wavelet basis used. It turned out that
the smooth base-line function, to which noise data are fitted,
can introduce distortions at all levels of the wavelet trans-
form. Furthermore, such distortions are nonuniversal in the
sense that they depend on the wavelet basis. Thus, in order to
obtain meaningful results from averaged wavelet coeffi-
cients, one must fully detrend the raw data. Once we did so,
we found strong indications that the detrended-size correla-
tions behave as white noise �see Fig. 6�. This is apparently at
odds with earlier �Fourier� power-spectrum results �see, e.g.,
Ref. �6�, and references therein�, which would lead one to
expect 1 / f2 behavior, at least for high frequencies. However,
the derivation of the latter result �e.g., by direct integration�
fully takes into account the exponential base-line shape; thus,
one is referring to a different object. Here, as explained
above, we are dealing with detrended data.

Finally, in Sec. IV D, we considered size correlations
against time in nonadiabatic regimes �but well within the
driving-rate range where intermittency still holds �6��. For
driving rates � spanning one order of magnitude, we found
rather well-defined frequency intervals for which detrended
correlations behave as f−�, ��1.5. By changing variables
from “absolute” to “natural” frequency, we found that said
intervals collapse together, which indicates that they pertain
to intra-avalanche correlations. Rather than attaching much
significance to the numerical value of the power-law expo-
nent �since the shortness of the interval along which such
behavior holds prevents one from doing so�, one must em-
phasize the good degree of curve collapse exactly in that
section, and only there. This indicates that this section is the
“special” one; i.e., it corresponds to the frequency range
along which universal �driving-rate-independent� properties
hold. Furthermore, our considerations leading to the conclu-
sion that such scaling behavior reflects intra-avalanche cor-
relations are completely independent of the analysis of
higher-order power spectra experimental data, carried out in
Refs. �19,20� and which leads to the very same conclusion as
regards BN in samples of Fe21Co64B15.
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